Warning: SQLite3::querySingle(): Unable to prepare statement: 1, no such table: sites in /home/admin/web/local.example.com/public_html/index.php on line 46
 Most profitable indicator for Binary options and Forex ...

Most profitable indicator for Binary options and Forex ...

The Next Processor Change is Within ARMs Reach

As you may have seen, I sent the following Tweet: “The Apple ARM MacBook future is coming, maybe sooner than people expect” https://twitter.com/choco_bit/status/1266200305009676289?s=20
Today, I would like to further elaborate on that.
tl;dr Apple will be moving to Arm based macs in what I believe are 4 stages, starting around 2015 and ending around 2023-2025: Release of T1 chip Macbooks, release of T2 chip Macbooks, Release of at least one lower end model Arm Macbook, and transitioning full lineup to Arm. Reasons for each are below.
Apple is very likely going to switch to switch their CPU platform to their in-house silicon designs with an ARM architecture. This understanding is a fairly common amongst various Apple insiders. Here is my personal take on how this switch will happen and be presented to the consumer.
The first question would likely be “Why would Apple do this again?”. Throughout their history, Apple has already made two other storied CPU architecture switches - first from the Motorola 68k to PowerPC in the early 90s, then from PowerPC to Intel in the mid 2000s. Why make yet another? Here are the leading reasons:
A common refrain heard on the Internet is the suggestion that Apple should switch to using CPUs made by AMD, and while this has been considered internally, it will most likely not be chosen as the path forward, even for their megalithic giants like the Mac Pro. Even though AMD would mitigate Intel’s current set of problems, it does nothing to help the issue of the x86_64 architecture’s problems and inefficiencies, on top of jumping to a platform that doesn’t have a decade of proven support behind it. Why spend a lot of effort re-designing and re- optimizing for AMD’s platform when you can just put that effort into your own, and continue the vertical integration Apple is well-known for?
I believe that the internal development for the ARM transition started around 2015/2016 and is considered to be happening in 4 distinct stages. These are not all information from Apple insiders; some of these these are my own interpretation based off of information gathered from supply-chain sources, examination of MacBook schematics, and other indicators from Apple.

Stage1 (from 2014/2015 to 2017):

The rollout of computers with Apple’s T1 chip as a coprocessor. This chip is very similar to Apple’s T8002 chip design, which was used for the Apple Watch Series 1 and Series 2. The T1 is primarily present on the first TouchID enabled Macs, 2016 and 2017 model year MacBook Pros.
Considering the amount of time required to design and validate a processor, this stage most likely started around 2014 or 2015, with early experimentation to see whether an entirely new chip design would be required, or if would be sufficient to repurpose something in the existing lineup. As we can see, the general purpose ARM processors aren’t a one- trick pony.
To get a sense of the decision making at the time, let’s look back a bit. The year is 2016, and we're witnessing the beginning of stagnation of Intel processor lineup. There is not a lot to look forward to other than another “+” being added to the 14nm fabrication process. The MacBook Pro has used the same design for many years now, and its age is starting to show. Moving to AMD is still very questionable, as they’ve historically not been able to match Intel’s performance or functionality, especially at the high end, and since the “Ryzen” lineup is still unreleased, there is absolutely no benchmarks or other data to show they are worth consideration, and AMD’s most recent line of “Bulldozer” processors were very poorly received. Now is probably as good a time as any to begin experimenting with the in-house ARM designs, but it’s not time to dive into the deep end yet, our chips are not nearly mature enough to compete, and it’s not yet certain how long Intel will be stuck in the mud. As well, it is widely understood that Apple and Intel have an exclusivity contract in exchange for advantageous pricing. Any transition would take considerable time and effort, and since there are no current viable alternative to Intel, the in-house chips will need to advance further, and breaching a contract with Intel is too great a risk. So it makes sense to start with small deployments, to extend the timeline, stretch out to the end of the contract, and eventually release a real banger of a Mac.
Thus, the 2016 Touch Bar MacBooks were born, alongside the T1 chip mentioned earlier. There are good reasons for abandoning the piece of hardware previously used for a similar purpose, the SMC or System Management Controller. I suspect that the biggest reason was to allow early analysis of the challenges that would be faced migrating Mac built- in peripherals and IO to an ARM-based controller, as well as exploring the manufacturing, power, and performance results of using the chips across a broad deployment, and analyzing any early failure data, then using this to patch any issues, enhance processes, and inform future designs looking towards the 2nd stage.
The former SMC duties now moved to T1 includes things like
The T1 chip also communicates with a number of other controllers to manage a MacBook’s behavior. Even though it’s not a very powerful CPU by modern standards, it’s already responsible for a large chunk of the machine’s operation. Moving control of these peripherals to the T1 chip also brought about the creation of the fabled BridgeOS software, a shrunken-down watchOS-based system that operates fully independently of macOS and the primary Intel processor.
BridgeOS is the first step for Apple’s engineering teams to begin migrating underlying systems and services to integrate with the ARM processor via BridgeOS, and it allowed internal teams to more easily and safely develop and issue firmware updates. Since BridgeOS is based on a standard and now well-known system, it means that they can leverage existing engineering expertise to flesh out the T1’s development, rather than relying on the more arcane and specialized SMC system, which operates completely differently and requires highly specific knowledge to work with. It also allows reuse of the same fabrication pipeline used for Apple Watch processors, and eliminated the need to have yet another IC design for the SMC, coming from a separate source, to save a bit on cost.
Also during this time, on the software side, “Project Marzipan”, today Catalyst, came into existence. We'll get to this shortly.
For the most part, this Stage 1 went without any major issues. There were a few firmware problems at first during the product launch, but they were quickly solved with software updates. Now that engineering teams have had experience building for, manufacturing, and shipping the T1 systems, Stage 2 would begin.

Stage2 (2018-Present):

Stage 2 encompasses the rollout of Macs with the T2 coprocessor, replacing the T1. This includes a much wider lineup, including MacBook Pro with Touch Bar, starting with 2018 models, MacBook Air starting with 2018 models, the iMac Pro, the 2019 Mac Pro, as well as Mac Mini starting in 2018.
With this iteration, the more powerful T8012 processor design was used, which is a further revision of the T8010 design that powers the A10 series processors used in the iPhone 7. This change provided a significant increase in computational ability and brought about the integration of even more devices into T2. In addition to the T1’s existing responsibilities, T2 now controls:
Those last 2 points are crucial for Stage 2. Under this new paradigm, the vast majority of the Mac is now under the control of an in-house ARM processor. Stage 2 also brings iPhone-grade hardware security to the Mac. These T2 models also incorporated a supported DFU (Device Firmware Update, more commonly “recovery mode”), which acts similarly to the iPhone DFU mode and allows restoration of the BridgeOS firmware in the event of corruption (most commonly due to user-triggered power interruption during flashing).
Putting more responsibility onto the T2 again allows for Apple’s engineering teams to do more early failure analysis on hardware and software, monitor stability of these machines, experiment further with large-scale production and deployment of this ARM platform, as well as continue to enhance the silicon for Stage 3.
A few new user-visible features were added as well in this stage, such as support for the passive “Hey Siri” trigger, and offloading image and video transcoding to the T2 chip, which frees up the main Intel processor for other applications. BridgeOS was bumped to 2.0 to support all of these changes and the new chip.
On the macOS software side, what was internally known as Project Marzipan was first demonstrated to the public. Though it was originally discovered around 2017, and most likely began development and testing within later parts of Stage 1, its effects could be seen in 2018 with the release of iPhone apps, now running on the Mac using the iOS SDKs: Voice Recorder, Apple News, Home, Stocks, and more, with an official announcement and public release at WWDC in 2019. Catalyst would come to be the name of Marzipan used publicly. This SDK release allows app developers to easily port iOS apps to run on macOS, with minimal or no code changes, and without needing to develop separate versions for each. The end goal is to allow developers to submit a single version of an app, and allow it to work seamlessly on all Apple platforms, from Watch to Mac. At present, iOS and iPadOS apps are compiled for the full gamut of ARM instruction sets used on those devices, while macOS apps are compiled for x86_64. The logical next step is to cross this bridge, and unify the instruction sets.
With this T2 release, the new products using it have not been quite as well received as with the T1. Many users have noticed how this change contributes further towards machines with limited to no repair options outside of Apple’s repair organization, as well as some general issues with bugs in the T2.
Products with the T2 also no longer have the “Lifeboat” connector, which was previously present on 2016 and 2017 model Touch Bar MacBook Pro. This connector allowed a certified technician to plug in a device called a CDM Tool (Customer Data Migration Tool) to recover data off of a machine that was not functional. The removal of this connector limits the options for data recovery in the event of a problem, and Apple has never offered any data recovery service, meaning that a irreparable failure of the T2 chip or the primary board would result in complete data loss, in part due to the strong encryption provided by the T2 chip (even if the data got off, the encryption keys were lost with the T2 chip). The T2 also brought about the linkage of component serial numbers of certain internal components, such as the solid state storage, display, and trackpad, among other components. In fact, many other controllers on the logic board are now also paired to the T2, such as the WiFi and Bluetooth controller, the PMIC (Power Management Controller), and several other components. This is the exact same system used on newer iPhone models and is quite familiar to technicians who repair iPhone logic boards. While these changes are fantastic for device security and corporate and enterprise users, allowing for a very high degree of assurance that devices will refuse to boot if tampered with in any way - even from storied supply chain attacks, or other malfeasance that can be done with physical access to a machine - it has created difficulty with consumers who more often lack the expertise or awareness to keep critical data backed up, as well as the funds to perform the necessary repairs from authorized repair providers. Other issues reported that are suspected to be related to T2 are audio “cracking” or distortion on the internal speakers, and the BridgeOS becoming corrupt following a firmware update resulting in a machine that can’t boot.
I believe these hiccups will be properly addressed once macOS is fully integrated with the ARM platform. This stage of the Mac is more like a chimera of an iPhone and an Intel based computer. Technically, it does have all of the parts of an iPhone present within it, cellular radio aside, and I suspect this fusion is why these issues exist.
Recently, security researchers discovered an underlying security problem present within the Boot ROM code of the T1 and T2 chip. Due to being the same fundamental platform as earlier Apple Watch and iPhone processors, they are vulnerable to the “checkm8” exploit (CVE-2019-8900). Because of how these chips operate in a Mac, firmware modifications caused by use of the exploit will persist through OS reinstallation and machine restarts. Both the T1 and T2 chips are always on and running, though potentially in a heavily reduced power usage state, meaning the only way to clean an exploited machine is to reflash the chip, triggering a restart, or to fully exhaust or physically disconnect the battery to flush its memory. Fortunately, this exploit cannot be done remotely and requires physical access to the Mac for an extended duration, as well as a second Mac to perform the change, so the majority of users are relatively safe. As well, with a very limited execution environment and access to the primary system only through a “mailbox” protocol, the utility of exploiting these chips is extremely limited. At present, there is no known malware that has used this exploit. The proper fix will come with the next hardware revision, and is considered a low priority due to the lack of practical usage of running malicious code on the coprocessor.
At the time of writing, all current Apple computers have a T2 chip present, with the exception of the 2019 iMac lineup. This will change very soon with the expected release of the 2020 iMac lineup at WWDC, which will incorporate a T2 coprocessor as well.
Note: from here on, this turns entirely into speculation based on info gathered from a variety of disparate sources.
Right now, we are in the final steps of Stage 2. There are strong signs that an a MacBook (12”) with an ARM main processor will be announced this year at WWDC (“One more thing...”), at a Fall 2020 event, Q1 2021 event, or WWDC 2021. Based on the lack of a more concrete answer, WWDC2020 will likely not see it, but I am open to being wrong here.

Stage3 (Present/2021 - 2022/2023):

Stage 3 involves the first version of at least one fully ARM-powered Mac into Apple’s computer lineup.
I expect this will come in the form of the previously-retired 12” MacBook. There are rumors that Apple is still working internally to perfect the infamous Butterfly keyboard, and there are also signs that Apple is developing an A14x based processors with 8-12 cores designed specifically for use as the primary processor in a Mac. It makes sense that this model could see the return of the Butterfly keyboard, considering how thin and light it is intended to be, and using an A14x processor would make it will be a very capable, very portable machine, and should give customers a good taste of what is to come.
Personally, I am excited to test the new 12" “ARMbook”. I do miss my own original 12", even with all the CPU failure issues those older models had. It was a lovely form factor for me.
It's still not entirely known whether the physical design of these will change from the retired version, exactly how many cores it will have, the port configuration, etc. I have also heard rumors about the 12” model possibly supporting 5G cellular connectivity natively thanks to the A14 series processor. All of this will most likely be confirmed soon enough.
This 12” model will be the perfect stepping stone for stage 3, since Apple’s ARM processors are not yet a full-on replacement for Intel’s full processor lineup, especially at the high end, in products such as the upcoming 2020 iMac, iMac Pro, 16” MacBook Pro, and the 2019 Mac Pro.
Performance of Apple’s ARM platform compared to Intel has been a big point of contention over the last couple years, primarily due to the lack of data representative of real-world desktop usage scenarios. The iPad Pro and other models with Apple’s highest-end silicon still lack the ability to execute a lot of high end professional applications, so data about anything more than video editing and photo editing tasks benchmarks quickly becomes meaningless. While there are completely synthetic benchmarks like Geekbench, Antutu, and others, to try and bridge the gap, they are very far from being accurate or representative of the real real world performance in many instances. Even though the Apple ARM processors are incredibly powerful, and I do give constant praise to their silicon design teams, there still just isn’t enough data to show how they will perform for real-world desktop usage scenarios, and synthetic benchmarks are like standardized testing: they only show how good a platform is at running the synthetic benchmark. This type of benchmark stresses only very specific parts of each chip at a time, rather than how well it does a general task, and then boil down the complexity and nuances of each chip into a single numeric score, which is not a remotely accurate way of representing processors with vastly different capabilities and designs. It would be like gauging how well a person performs a manual labor task based on averaging only the speed of every individual muscle in the body, regardless of if, or how much, each is used. A specific group of muscles being stronger or weaker than others could wildly skew the final result, and grossly misrepresent performance of the person as a whole. Real world program performance will be the key in determining the success and future of this transition, and it will have to be great on this 12" model, but not just in a limited set of tasks, it will have to be great at *everything*. It is intended to be the first Horseman of the Apocalypse for the Intel Mac, and it better behave like one. Consumers have been expecting this, especially after 15 years of Intel processors, the continued advancement of Apple’s processors, and the decline of Intel’s market lead.
The point of this “demonstration” model is to ease both users and developers into the desktop ARM ecosystem slowly. Much like how the iPhone X paved the way for FaceID-enabled iPhones, this 12" model will pave the way towards ARM Mac systems. Some power-user type consumers may complain at first, depending on the software compatibility story, then realize it works just fine since the majority of the computer users today do not do many tasks that can’t be accomplished on an iPad or lower end computer. Apple needs to gain the public’s trust for basic tasks first, before they will be able to break into the market of users performing more hardcore or “Pro” tasks. This early model will probably not be targeted at these high-end professionals, which will allow Apple to begin to gather early information about the stability and performance of this model, day to day usability, developmental issues that need to be addressed, hardware failure analysis, etc. All of this information is crucial to Stage 4, or possibly later parts of Stage 3.
The 2 biggest concerns most people have with the architecture change is app support and Bootcamp.
Any apps released through the Mac App Store will not be a problem. Because App Store apps are submitted as LLVM IR (“Bitcode”), the system can automatically download versions compiled and optimized for ARM platforms, similar to how App Thinning on iOS works. For apps distributed outside the App Store, thing might be more tricky. There are a few ways this could go:
As for Bootcamp, while ARM-compatible versions of Windows do exist and are in development, they come with their own similar set of app support problems. Microsoft has experimented with emulating x86_64 on their ARM-based Surface products, and some other OEMs have created their own Windows-powered ARM laptops, but with very little success. Performance is a problem across the board, with other ARM silicon not being anywhere near as advanced, and with the majority of apps in the Windows ecosystem that were not developed in-house at Microsoft running terribly due to the x86_64 emulation software. If Bootcamp does come to the early ARM MacBook, it more than likely will run like very poorly for anything other than Windows UWP apps. There is a high chance it will be abandoned entirely until Windows becomes much more friendly to the architecture.
I believe this will also be a very crucial turning point for the MacBook lineup as a whole. At present, the iPad Pro paired with the Magic Keyboard is, in many ways, nearly identical to a laptop, with the biggest difference being the system software itself. While Apple executives have outright denied plans of merging the iPad and MacBook line, that could very well just be a marketing stance, shutting the down rumors in anticipation of a well-executed surprise. I think that Apple might at least re-examine the possibility of merging Macs and iPads in some capacity, but whether they proceed or not could be driven by consumer reaction to both products. Do they prefer the feel and usability of macOS on ARM, and like the separation of both products? Is there success across the industry of the ARM platform, both at the lower and higher end of the market? Do users see that iPadOS and macOS are just 2 halves of the same coin? Should there be a middle ground, and a new type of product similar to the Surface Book, but running macOS? Should Macs and iPads run a completely uniform OS? Will iPadOS ever see exposed the same sort of UNIX-based tools for IT administrators and software developers that macOS has present? These are all very real questions that will pop up in the near future.
The line between Stage 3 and Stage 4 will be blurry, and will depend on how Apple wishes to address different problems going forward, and what the reactions look like. It is very possible that only 12” will be released at first, or a handful more lower end model laptop and desktop products could be released, with high performance Macs following in Stage 4, or perhaps everything but enterprise products like Mac Pro will be switched fully. Only time will tell.

Stage 4 (the end goal):

Congratulations, you’re made it to the end of my TED talk. We are now well into the 2020s and COVID-19 Part 4 is casually catching up to the 5G = Virus crowd. All Macs have transitioned fully to ARM. iMac, MacBooks Pro and otherwise, Mac Pro, Mac Mini, everything. The future is fully Apple from top to bottom, and vertical integration leading to market dominance continues. Many other OEM have begun to follow in this path to some extent, creating more demand for a similar class of silicon from other firms.
The remainder here is pure speculation with a dash of wishful thinking. There are still a lot of things that are entirely unclear. The only concrete thing is that Stage 4 will happen when everything is running Apple’s in- house processors.
By this point, consumers will be quite familiar with the ARM Macs existing, and developers have had have enough time to transition apps fully over to the newly unified system. Any performance, battery life, or app support concerns will not be an issue at this point.
There are no more details here, it’s the end of the road, but we are left with a number of questions.
It is unclear if Apple will stick to AMD's GPUs or whether they will instead opt to use their in-house graphics solutions that have been used since the A11 series of processors.
How Thunderbolt support on these models of Mac will be achieved is unknown. While Intel has made it openly available for use, and there are plans to have USB and Thunderbolt combined in a single standard, it’s still unclear how it will play along with Apple processors. Presently, iPhones do support connecting devices via PCI Express to the processor, but it has only been used for iPhone and iPad storage. The current Apple processors simply lack the number of lanes required for even the lowest end MacBook Pro. This is an issue that would need to be addressed in order to ship a full desktop-grade platform.
There is also the question of upgradability for desktop models, and if and how there will be a replaceable, socketed version of these processors. Will standard desktop and laptop memory modules play nicely with these ARM processors? Will they drop standard memory across the board, in favor of soldered options, or continue to support user-configurable memory on some models? Will my 2023 Mac Pro play nicely with a standard PCI Express device that I buy off the shelf? Will we see a return of “Mac Edition” PCI devices?
There are still a lot of unknowns, and guessing any further in advance is too difficult. The only thing that is certain, however, is that Apple processors coming to Mac is very much within arm’s reach.
submitted by Fudge_0001 to apple [link] [comments]

An introduction to Linux through Windows Subsystem for Linux

I'm working as an Undergraduate Learning Assistant and wrote this guide to help out students who were in the same boat I was in when I first took my university's intro to computer science course. It provides an overview of how to get started using Linux, guides you through setting up Windows Subsystem for Linux to run smoothly on Windows 10, and provides a very basic introduction to Linux. Students seemed to dig it, so I figured it'd help some people in here as well. I've never posted here before, so apologies if I'm unknowingly violating subreddit rules.

An introduction to Linux through Windows Subsystem for Linux

GitHub Pages link

Introduction and motivation

tl;dr skip to next section
So you're thinking of installing a Linux distribution, and are unsure where to start. Or you're an unfortunate soul using Windows 10 in CPSC 201. Either way, this guide is for you. In this section I'll give a very basic intro to some of options you've got at your disposal, and explain why I chose Windows Subsystem for Linux among them. All of these have plenty of documentation online so Google if in doubt.

Setting up WSL

So if you've read this far I've convinced you to use WSL. Let's get started with setting it up. The very basics are outlined in Microsoft's guide here, I'll be covering what they talk about and diving into some other stuff.

1. Installing WSL

Press the Windows key (henceforth Winkey) and type in PowerShell. Right-click the icon and select run as administrator. Next, paste in this command:
dism.exe /online /enable-feature /featurename:Microsoft-Windows-Subsystem-Linux /all /norestart 
Now you'll want to perform a hard shutdown on your computer. This can become unecessarily complicated because of Window's fast startup feature, but here we go. First try pressing the Winkey, clicking on the power icon, and selecting Shut Down while holding down the shift key. Let go of the shift key and the mouse, and let it shutdown. Great! Now open up Command Prompt and type in
wsl --help 
If you get a large text output, WSL has been successfully enabled on your machine. If nothing happens, your computer failed at performing a hard shutdown, in which case you can try the age-old technique of just holding down your computer's power button until the computer turns itself off. Make sure you don't have any unsaved documents open when you do this.

2. Installing Ubuntu

Great! Now that you've got WSL installed, let's download a Linux distro. Press the Winkey and type in Microsoft Store. Now use the store's search icon and type in Ubuntu. Ubuntu is a Debian-based Linux distribution, and seems to have the best integration with WSL, so that's what we'll be going for. If you want to be quirky, here are some other options. Once you type in Ubuntu three options should pop up: Ubuntu, Ubuntu 20.04 LTS, and Ubuntu 18.04 LTS.
![Windows Store](https://theshepord.github.io/intro-to-WSL/docs/images/winstore.png) Installing plain-old "Ubuntu" will mean the app updates whenever a new major Ubuntu distribution is released. The current version (as of 09/02/2020) is Ubuntu 20.04.1 LTS. The other two are older distributions of Ubuntu. For most use-cases, i.e. unless you're running some software that will break when upgrading, you'll want to pick the regular Ubuntu option. That's what I did.
Once that's done installing, again hit Winkey and open up Ubuntu. A console window should open up, asking you to wait a minute or two for files to de-compress and be stored on your PC. All future launches should take less than a second. It'll then prompt you to create a username and password. I'd recommend sticking to whatever your Windows username and password is so that you don't have to juggle around two different usepassword combinations, but up to you.
Finally, to upgrade all your packages, type in
sudo apt-get update 
And then
sudo apt-get upgrade 
apt-get is the Ubuntu package manager, this is what you'll be using to install additional programs on WSL.

3. Making things nice and crispy: an introduction to UNIX-based filesystems

tl;dr skip to the next section
The two above steps are technically all you need for running WSL on your system. However, you may notice that whenever you open up the Ubuntu app your current folder seems to be completely random. If you type in pwd (for Print Working Directory, 'directory' is synonymous with 'folder') inside Ubuntu and hit enter, you'll likely get some output akin to /home/. Where is this folder? Is it my home folder? Type in ls (for LiSt) to see what files are in this folder. Probably you won't get any output, because surprise surprise this folder is not your Windows home folder and is in fact empty (okay it's actually not empty, which we'll see in a bit. If you type in ls -a, a for All, you'll see other files but notice they have a period in front of them. This is a convention for specifying files that should be hidden by default, and ls, as well as most other commands, will honor this convention. Anyways).
So where is my Windows home folder? Is WSL completely separate from Windows? Nope! This is Windows Subsystem for Linux after all. Notice how, when you typed pwd earlier, the address you got was /home/. Notice that forward-slash right before home. That forward-slash indicates the root directory (not to be confused with the /root directory), which is the directory at the top of the directory hierarchy and contains all other directories in your system. So if we type ls /, you'll see what are the top-most directories in your system. Okay, great. They have a bunch of seemingly random names. Except, shocker, they aren't random. I've provided a quick run-down in Appendix A.
For now, though, we'll focus on /mnt, which stands for mount. This is where your C drive, which contains all your Windows stuff, is mounted. So if you type ls /mnt/c, you'll begin to notice some familiar folders. Type in ls /mnt/c/Users, and voilà, there's your Windows home folder. Remember this filepath, /mnt/c/Users/. When we open up Ubuntu, we don't want it tossing us in this random /home/ directory, we want our Windows home folder. Let's change that!

4. Changing your default home folder

Type in sudo vim /etc/passwd. You'll likely be prompted for your Ubuntu's password. sudo is a command that gives you root privileges in bash (akin to Windows's right-click then selecting 'Run as administrator'). vim is a command-line text-editing tool, which out-of-the-box functions kind of like a crummy Notepad (you can customize it infinitely though, and some people have insane vim setups. Appendix B has more info). /etc/passwd is a plaintext file that historically was used to store passwords back when encryption wasn't a big deal, but now instead stores essential user info used every time you open up WSL.
Anyway, once you've typed that in, your shell should look something like this: ![vim /etc/passwd](https://theshepord.github.io/intro-to-WSL/docs/images/vim-etc-passwd.png)
Using arrow-keys, find the entry that begins with your Ubuntu username. It should be towards the bottom of the file. In my case, the line looks like
theshep:x:1000:1000:,,,:/home/pizzatron3000:/bin/bash 
See that cringy, crummy /home/pizzatron3000? Not only do I regret that username to this day, it's also not where we want our home directory. Let's change that! Press i to initiate vim's -- INSERT -- mode. Use arrow-keys to navigate to that section, and delete /home/ by holding down backspace. Remember that filepath I asked you to remember? /mnt/c/Users/. Type that in. For me, the line now looks like
theshep:x:1000:1000:,,,:/mnt/c/Users/lucas:/bin/bash 
Next, press esc to exit insert mode, then type in the following:
:wq 
The : tells vim you're inputting a command, w means write, and q means quit. If you've screwed up any of the above sections, you can also type in :q! to exit vim without saving the file. Just remember to exit insert mode by pressing esc before inputting commands, else you'll instead be writing to the file.
Great! If you now open up a new terminal and type in pwd, you should be in your Window's home folder! However, things seem to be lacking their usual color...

5. Importing your configuration files into the new home directory

Your home folder contains all your Ubuntu and bash configuration files. However, since we just changed the home folder to your Window's home folder, we've lost these configuration files. Let's bring them back! These configuration files are hidden inside /home/, and they all start with a . in front of the filename. So let's copy them over into your new home directory! Type in the following:
cp -r /home//. ~ 
cp stands for CoPy, -r stands for recursive (i.e. descend into directories), the . at the end is cp-specific syntax that lets it copy anything, including hidden files, and the ~ is a quick way of writing your home directory's filepath (which would be /mnt/c/Users/) without having to type all that in again. Once you've run this, all your configuration files should now be present in your new home directory. Configuration files like .bashrc, .profile, and .bash_profile essentially provide commands that are run whenever you open a new shell. So now, if you open a new shell, everything should be working normally. Amazing. We're done!

6. Tips & tricks

Here are two handy commands you can add to your .profile file. Run vim ~/.profile, then, type these in at the top of the .profile file, one per line, using the commands we discussed previously (i to enter insert mode, esc to exit insert mode, :wq to save and quit).
alias rm='rm -i' makes it so that the rm command will always ask for confirmation when you're deleting a file. rm, for ReMove, is like a Windows delete except literally permanent and you will lose that data for good, so it's nice to have this extra safeguard. You can type rm -f to bypass. Linux can be super powerful, but with great power comes great responsibility. NEVER NEVER NEVER type in rm -rf /, this is saying 'delete literally everything and don't ask for confirmation', your computer will die. Newer versions of rm fail when you type this in, but don't push your luck. You've been warned. Be careful.
export DISPLAY=:0 if you install XLaunch VcXsrv, this line allows you to open graphical interfaces through Ubuntu. The export sets the environment variable DISPLAY, and the :0 tells Ubuntu that it should use the localhost display.

Appendix A: brief intro to top-level UNIX directories

tl;dr only mess with /mnt, /home, and maybe maybe /usr. Don't touch anything else.
  • bin: binaries, contains Ubuntu binary (aka executable) files that are used in bash. Here you'll find the binaries that execute commands like ls and pwd. Similar to /usbin, but bin gets loaded earlier in the booting process so it contains the most important commands.
  • boot: contains information for operating system booting. Empty in WSL, because WSL isn't an operating system.
  • dev: devices, provides files that allow Ubuntu to communicate with I/O devices. One useful file here is /dev/null, which is basically an information black hole that automatically deletes any data you pass it.
  • etc: no idea why it's called etc, but it contains system-wide configuration files
  • home: equivalent to Window's C:/Users folder, contains home folders for the different users. In an Ubuntu system, under /home/ you'd find the Documents folder, Downloads folder, etc.
  • lib: libraries used by the system
  • lib64 64-bit libraries used by the system
  • mnt: mount, where your drives are located
  • opt: third-party applications that (usually) don't have any dependencies outside the scope of their own package
  • proc: process information, contains runtime information about your system (e.g. memory, mounted devices, hardware configurations, etc)
  • run: directory for programs to store runtime information.
  • srv: server folder, holds data to be served in protocols like ftp, www, cvs, and others
  • sys: system, provides information about different I/O devices to the Linux Kernel. If dev files allows you to access I/O devices, sys files tells you information about these devices.
  • tmp: temporary, these are system runtime files that are (in most Linux distros) cleared out after every reboot. It's also sort of deprecated for security reasons, and programs will generally prefer to use run.
  • usr: contains additional UNIX commands, header files for compiling C programs, among other things. Kind of like bin but for less important programs. Most of everything you install using apt-get ends up here.
  • var: variable, contains variable data such as logs, databases, e-mail etc, but that persist across different boots.
Also keep in mind that all of this is just convention. No Linux distribution needs to follow this file structure, and in fact almost all will deviate from what I just described. Hell, you could make your own Linux fork where /mnt/c information is stored in tmp.

Appendix B: random resources

EDIT: implemented various changes suggested in the comments. Thanks all!
submitted by HeavenBuilder to linux4noobs [link] [comments]

CLI & GUI v0.16.0.3 'Nitrogen Nebula' released!

This is the CLI & GUI v0.16.0.3 'Nitrogen Nebula' point release. This release predominantly features bug fixes and performance improvements.

(Direct) download links (GUI)

(Direct) download links (CLI)

GPG signed hashes

We encourage users to check the integrity of the binaries and verify that they were signed by binaryFate's GPG key. A guide that walks you through this process can be found here for Windows and here for Linux and Mac OS X.
-----BEGIN PGP SIGNED MESSAGE----- Hash: SHA256 # This GPG-signed message exists to confirm the SHA256 sums of Monero binaries. # # Please verify the signature against the key for binaryFate in the # source code repository (/utils/gpg_keys). # # ## CLI 75b198869a3a117b13b9a77b700afe5cee54fd86244e56cb59151d545adbbdfd monero-android-armv7-v0.16.0.3.tar.bz2 b48918a167b0961cdca524fad5117247239d7e21a047dac4fc863253510ccea1 monero-android-armv8-v0.16.0.3.tar.bz2 727a1b23fbf517bf2f1878f582b3f5ae5c35681fcd37bb2560f2e8ea204196f3 monero-freebsd-x64-v0.16.0.3.tar.bz2 6df98716bb251257c3aab3cf1ab2a0e5b958ecf25dcf2e058498783a20a84988 monero-linux-armv7-v0.16.0.3.tar.bz2 6849446764e2a8528d172246c6b385495ac60fffc8d73b44b05b796d5724a926 monero-linux-armv8-v0.16.0.3.tar.bz2 cb67ad0bec9a342b0f0be3f1fdb4a2c8d57a914be25fc62ad432494779448cc3 monero-linux-x64-v0.16.0.3.tar.bz2 49aa85bb59336db2de357800bc796e9b7d94224d9c3ebbcd205a8eb2f49c3f79 monero-linux-x86-v0.16.0.3.tar.bz2 16a5b7d8dcdaff7d760c14e8563dd9220b2e0499c6d0d88b3e6493601f24660d monero-mac-x64-v0.16.0.3.tar.bz2 5d52712827d29440d53d521852c6af179872c5719d05fa8551503d124dec1f48 monero-win-x64-v0.16.0.3.zip ff094c5191b0253a557be5d6683fd99e1146bf4bcb99dc8824bd9a64f9293104 monero-win-x86-v0.16.0.3.zip # ## GUI 50fe1d2dae31deb1ee542a5c2165fc6d6c04b9a13bcafde8a75f23f23671d484 monero-gui-install-win-x64-v0.16.0.3.exe 20c03ddb1c82e1bcb73339ef22f409e5850a54042005c6e97e42400f56ab2505 monero-gui-linux-x64-v0.16.0.3.tar.bz2 574a84148ee6af7119fda6b9e2859e8e9028fe8a8eec4dfdd196aeade47e9c90 monero-gui-mac-x64-v0.16.0.3.dmg 371cb4de2c9ccb5ed99b2622068b6aeea5bdfc7b9805340ea7eb92e7c17f2478 monero-gui-win-x64-v0.16.0.3.zip # # # ~binaryFate -----BEGIN PGP SIGNATURE----- iQIzBAEBCAAdFiEEgaxZH+nEtlxYBq/D8K9NRioL35IFAl81bL8ACgkQ8K9NRioL 35J+UA//bgY6Mhikh8Cji8i2bmGXEmGvvWMAHJiAtAG2lgW3BT9BHAFMfEpUP5rk svFNsUY/Uurtzxwc/myTPWLzvXVMHzaWJ/EMKV9/C3xrDzQxRnl/+HRS38aT/D+N gaDjchCfk05NHRIOWkO3+2Erpn3gYZ/VVacMo3KnXnQuMXvAkmT5vB7/3BoosOU+ B1Jg5vPZFCXyZmPiMQ/852Gxl5FWi0+zDptW0jrywaS471L8/ZnIzwfdLKgMO49p Fek1WUUy9emnnv66oITYOclOKoC8IjeL4E1UHSdTnmysYK0If0thq5w7wIkElDaV avtDlwqp+vtiwm2svXZ08rqakmvPw+uqlYKDSlH5lY9g0STl8v4F3/aIvvKs0bLr My2F6q9QeUnCZWgtkUKsBy3WhqJsJ7hhyYd+y+sBFIQH3UVNv5k8XqMIXKsrVgmn lRSolLmb1pivCEohIRXl4SgY9yzRnJT1OYHwgsNmEC5T9f019QjVPsDlGNwjqgqB S+Theb+pQzjOhqBziBkRUJqJbQTezHoMIq0xTn9j4VsvRObYNtkuuBQJv1wPRW72 SPJ53BLS3WkeKycbJw3TO9r4BQDPoKetYTE6JctRaG3pSG9VC4pcs2vrXRWmLhVX QUb0V9Kwl9unD5lnN17dXbaU3x9Dc2pF62ZAExgNYfuCV/pTJmc= =bbBm -----END PGP SIGNATURE----- 

Upgrading (GUI)

Note that you should be able to utilize the automatic updater in the GUI that was recently added. A pop-up will appear with the new binary.
In case you want to update manually, you ought to perform the following steps:
  1. Download the new binaries (the .zip file (Windows) or the tar.bz2 file (Mac OS X and Linux)) from the direct download links in this thread or from the official website. If you run active AV (AntiVirus) software, I'd recommend to apply this guide -> https://monero.stackexchange.com/questions/10798/my-antivirus-av-software-blocks-quarantines-the-monero-gui-wallet-is-there
  2. Extract the new binaries (the .zip file (Windows) or the tar.bz2 file (Mac OS X and Linux) you just downloaded) to a new directory / folder of your liking.
  3. Open monero-wallet-gui. It should automatically load your "old" wallet.
If, for some reason, the GUI doesn't automatically load your old wallet, you can open it as follows:
[1] On the second page of the wizard (first page is language selection) choose Open a wallet from file
[2] Now select your initial / original wallet. Note that, by default, the wallet files are located in Documents\Monero\ (Windows), Users//Monero/ (Mac OS X), or home//Monero/ (Linux).
Lastly, note that a blockchain resync is not needed, i.e., it will simply pick up where it left off.

Upgrading (CLI)

You ought to perform the following steps:
  1. Download the new binaries (the .zip file (Windows) or the tar.bz2 file (Mac OS X and Linux)) from the official website, the direct download links in this thread, or Github.
  2. Extract the new binaries to a new directory of your liking.
  3. Copy over the wallet files from the old directory (i.e. the v0.15.x.x or v0.16.0.x directory).
  4. Start monerod and monero-wallet-cli (in case you have to use your wallet).
Note that a blockchain resync is not needed. Thus, if you open monerod-v0.16.0.3, it will simply pick up where it left off.

Release notes (GUI)

  • macOS app is now notarized by Apple
  • CMake improvments
  • Add support for IPv6 remote nodes
  • Add command history to Logs page
  • Add "Donate to Monero" button
  • Indicate probability of finding a block on Mining page
  • Minor bug fixes
Note that you can find a full change log here.

Release notes (CLI)

  • DoS fixes
  • Add option to print daily coin emission and fees in monero-blockchain-stats
  • Minor bug fixes
Note that you can find a full change log here.

Further remarks

  • A guide on pruning can be found here.
  • Ledger Monero users, please be aware that version 1.6.0 of the Ledger Monero App is required in order to properly use CLI or GUI v0.16.

Guides on how to get started (GUI)

https://github.com/monero-ecosystem/monero-GUI-guide/blob/mastemonero-GUI-guide.md
Older guides: (These were written for older versions, but are still somewhat applicable)
Sheep’s Noob guide to Monero GUI in Tails
https://medium.com/@Electricsheep56/the-monero-gui-wallet-broken-down-in-plain-english-bd2889b8c202

Ledger GUI guides:

How do I generate a Ledger Monero wallet with the GUI (monero-wallet-gui)?
How do I restore / recreate my Ledger Monero wallet?

Trezor GUI guides:

How do I generate a Trezor Monero wallet with the GUI (monero-wallet-gui)?
How to use Monero with Trezor - by Trezor
How do I restore / recreate my Trezor Monero wallet?

Ledger & Trezor CLI guides

Guides to resolve common issues (GUI)

My antivirus (AV) software blocks / quarantines the Monero GUI wallet, is there a work around I can utilize?
I am missing (not seeing) a transaction to (in) the GUI (zero balance)
Transaction stuck as “pending” in the GUI
How do I move the blockchain (data.mdb) to a different directory during (or after) the initial sync without losing the progress?
I am using the GUI and my daemon doesn't start anymore
My GUI feels buggy / freezes all the time
The GUI uses all my bandwidth and I can't browse anymore or use another application that requires internet connection
How do I change the language of the 25 word mnemonic seed in the GUI or CLI?
I am using remote node, but the GUI still syncs blockchain?

Using the GUI with a remote node

In the wizard, you can either select Simple mode or Simple mode (bootstrap) to utilize this functionality. Note that the GUI developers / contributors recommend to use Simple mode (bootstrap) as this mode will eventually use your own (local) node, thereby contributing to the strength and decentralization of the network. Lastly, if you manually want to set a remote node, you ought to use Advanced mode. A guide can be found here:
https://www.getmonero.org/resources/user-guides/remote_node_gui.html

Adding a new language to the GUI

https://github.com/monero-ecosystem/monero-translations/blob/masteweblate.md
If, after reading all these guides, you still require help, please post your issue in this thread and describe it in as much detail as possible. Also, feel free to post any other guides that could help people.
submitted by dEBRUYNE_1 to Monero [link] [comments]

Signals for binary options | Binary Options Signals

Signals for binary options | Binary Options Signals
Adaptive - The adaptive algorithm uses statistical analysis of historical data. In contrast to the classical signals where the signal is given by certain conditions, within the adaptive algorithm were analyzed each candle in history is evaluated, this is often an equivalent if the signals got every minute or 5 minutes counting on the expiration time. Thus, the adaptive strategy shows the foremost favourable moment for entering the market.
Trending - the subsequent technical indicators are wont to generate signals
It is possible to use any conditions for the formation of signals, except for the foremost part, all of them give signals on the brink of one another . If you've got interesting suggestions on adding signal algorithms, write to am@vfxalert.com. For us, it doesn't matter how the signal is made - signal power and heatmaps are going to be calculated automatically as soon as enough statistical data is acquired (at least 2000 signals)
Account types
Free - gives you access to all or any signals and extra statistics (power&heatmaps) for two random assets.
Pro - account give subsequent additional possibilities -
Signal power for all assets
Signals for binary options, Best binary options signals, Free Binary Options Signals, Binary Options Signals, binary signals, binary options signals software
Remove Ads
You can add Any Broker to vfxAlert app brokers list HeatMaps - automatically statistic of profitable signals with depends on current indicator values Signals filter - comfort tool to filtered signals Signals subscriptions - you receive signals by email or SMS Extended statistics

https://preview.redd.it/cyooh3bzzvp51.png?width=785&format=png&auto=webp&s=57ac3f7dbda59828496f7bc88b9f58289005f9a5
submitted by vfxAlert3 to u/vfxAlert3 [link] [comments]

vfxAlert - Signals for binary options

vfxAlert - Signals for binary options
vfxAlert it's a tool for a binary options traders which they will use in their own trading strategies. Using vfxAlert assumes that the users are conversant in the essential principles of the forex market. and that they understand the principles of technical analysis and statistical methods. There are two main ways the way to use vfxAlert:
Create a trading strategy supported signals of vfxAlert. Using adaptive algorithm for confirmation signals of existing trading strategy. Especially For Beginners Most of you think that binary options it's easy, that's absolutely wrong. Please feel the difference between easy to trade and simply earn money. Binary options are easy to trade - that's true...
But successful trading requires discipline and strict compliance with the principles of the trading strategy.
It's are going to be very difficult to know what exactly vfxAlert propose and the way to use of these statistical data. Our recommendation is to use free signals within the free version and learn technical analysis and statistical principles.
Trade 2 hours per day less . Trade at an equivalent time a day . Trade long-term signals. (Min. 5 min expiration time) Learn about assets what you getting to trade. How price moves in several trading sessions. See how trend influence on signals profitable. See how heatmaps&power influence on signals profitable. Analyse your trading statistics. Trade on demo-account. After one month you'll feel the market and possible you'll be ready to create your first trading strategy.
Signals for binary options, Best binary options signals, Free Binary Options Signals, Binary Options Signals, binary signals, binary options signals software
!Important: Signals aren't a recommendation for action. Signals are the results of marketing research on a specific algorithm, a trader has got to understand how signals are formed, and what's current market tendencies to form the proper decision.

Signals for binary options
!Important: vfxAlert don't offer trading strategies. vfxAlert offer signals and real-time statistics counting on current indicators values. See below:
The trading strategy may be a system of rules, on the idea of which the trader makes his own decisions. Such a system is made only on the idea of individual trading experience, gleaned knowledge and purchased skills. The strategy allows a deep understanding of the structure of the market and therefore the mechanisms of its operation, therefore, the exchange player makes decisions supported the present situation. On the idea of a private strategy, a trader can develop several trading systems and use them counting on market conditions. The strategy always takes under consideration fundamental factors, statistical data, also because the basic postulates of risk and money management.
submitted by vfxAlert3 to u/vfxAlert3 [link] [comments]

ResultsFileName = 0×0 empty char array Why? Where are my results?

Hello,
I am not getting any errors and I do not understand why I am not getting any output. I am trying to batch process a large number of ecg signals. Below is my code and the two relevant functions. Any help greatly appreciated. I am very new.
d = importSections("Dx_sections.csv"); % set the number of recordings n = height(d); % settings HRVparams = InitializeHRVparams('test_physionet') for ii = 1:n % Import waveform (ECG) [record, signals] = read_edf(strcat(d.PID(ii), '/baseline.edf')); myecg = record.ECG; Ann = []; [HRVout, ResultsFileName] = Main_HRV_Analysis(myecg,'','ECGWaveform',HRVparams) end function [HRVout, ResultsFileName ] = Main_HRV_Analysis(InputSig,t,InputFormat,HRVparams,subID,ann,sqi,varargin) % ====== HRV Toolbox for PhysioNet Cardiovascular Signal Toolbox ========= % % Main_HRV_Analysis(InputSig,t,InputFormat,HRVparams,subID,ann,sqi,varargin) % OVERVIEW: % Main "Validated Open-Source Integrated Matlab" VOSIM Toolbox script % Configured to accept RR intervals as well as raw data as input file % % INPUT: % InputSig - Vector containing RR intervals data (in seconds) % or ECG/PPG waveform % t - Time indices of the rr interval data (seconds) or % leave empty for ECG/PPG input % InputFormat - String that specifiy if the input vector is: % 'RRIntervals' for RR interval data % 'ECGWaveform' for ECG waveform % 'PPGWaveform' for PPG signal % HRVparams - struct of settings for hrv_toolbox analysis that can % be obtained using InitializeHRVparams.m function % HRVparams = InitializeHRVparams(); % % % OPTIONAL INPUTS: % subID - (optional) string to identify current subject % ann - (optional) annotations of the RR data at each point % indicating the type of the beat % sqi - (optional) Signal Quality Index; Requires a % matrix with at least two columns. Column 1 % should be timestamps of each sqi measure, and % Column 2 should be SQI on a scale from 0 to 1. % Use InputSig, Type pairs for additional signals such as ABP % or PPG signal. The input signal must be a vector containing % signal waveform and the Type: 'ABP' and\or 'PPG'. % % % OUTPUS: % results - HRV time and frequency domain metrics as well % as AC and DC, SDANN and SDNNi % ResultsFileName - Name of the file containing the results % % NOTE: before running this script review and modifiy the parameters % in "initialize_HRVparams.m" file accordingly with the specific % of the new project (see the readme.txt file for further details) % % EXAMPLES % - rr interval input % Main_HRV_Analysis(RR,t,'RRIntervals',HRVparams) % - ECG wavefrom input % Main_HRV_Analysis(ECGsig,t,'ECGWavefrom',HRVparams,'101') % - ECG waveform and also ABP and PPG waveforms % Main_HRV_Analysis(ECGsig,t,'ECGWaveform',HRVparams,[],[],[], abpSig, % 'ABP', ppgSig, 'PPG') % % DEPENDENCIES & LIBRARIES: % HRV Toolbox for PhysioNet Cardiovascular Signal Toolbox % https://github.com/cliffordlab/PhysioNet-Cardiovascular-Signal-Toolbox % % REFERENCE: % Vest et al. "An Open Source Benchmarked HRV Toolbox for Cardiovascular % Waveform and Interval Analysis" Physiological Measurement (In Press), 2018. % % REPO: % https://github.com/cliffordlab/PhysioNet-Cardiovascular-Signal-Toolbox % ORIGINAL SOURCE AND AUTHORS: % This script written by Giulia Da Poian % Dependent scripts written by various authors % (see functions for details) % COPYRIGHT (C) 2018 % LICENSE: % This software is offered freely and without warranty under % the GNU (v3 or later) public license. See license file for % more information %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if nargin < 4 error('Wrong number of input arguments') end if nargin < 5 subID = '0000'; end if nargin < 6 ann = []; end if nargin < 7 sqi = []; end if length(varargin) == 1 || length(varargin) == 3 error('Incomplete Signal-Type pair') elseif length(varargin) == 2 extraSigType = varargin(2); extraSig = varargin{1}; elseif length(varargin) == 4 extraSigType = [varargin(2) varargin(4)]; extraSig = [varargin{1} varargin{3}]; end if isa(subID,'cell'); subID = string(subID); end % Control on signal length if (strcmp(InputFormat, 'ECGWaveform') && length(InputSig)/HRVparams.Fs< HRVparams.windowlength) ... || (strcmp(InputFormat, 'PPGWaveform') && length(InputSig)/HRVparams.Fs 300 s VLF = [0.0033 .04]; % Requires at least 300 s window LF = [.04 .15]; % Requires at least 25 s window HF = [0.15 0.4]; % Requires at least 7 s window HRVparams.freq.limits = [ULF; VLF; LF; HF]; HRVparams.freq.zero_mean = 1; % Default: 1, Option for subtracting the mean from the input data HRVparams.freq.method = 'lomb'; % Default: 'lomb' % Options: 'lomb', 'burg', 'fft', 'welch' HRVparams.freq.plot_on = 0; % The following settings are for debugging spectral analysis methods HRVparams.freq.debug_sine = 0; % Default: 0, Adds sine wave to tachogram for debugging HRVparams.freq.debug_freq = 0.15; % Default: 0.15 HRVparams.freq.debug_weight = .03; % Default: 0.03 % Lomb: HRVparams.freq.normalize_lomb = 0; % Default: 0 % 1 = Normalizes Lomb Periodogram, % 0 = Doesn't normalize % Burg: (not recommended) HRVparams.freq.burg_poles = 15; % Default: 15, Number of coefficients % for spectral estimation using the Burg % method (not recommended) % The following settings are only used when the user specifies spectral % estimation methods that use resampling : 'welch','fft', 'burg' HRVparams.freq.resampling_freq = 7; % Default: 7, Hz HRVparams.freq.resample_interp_method = 'cub'; % Default: 'cub' % 'cub' = cublic spline method % 'lin' = linear spline method HRVparams.freq.resampled_burg_poles = 100; % Default: 100 %% 11. SDANN and SDNNI Analysis Settings HRVparams.sd.on = 1; % Default: 1, SD analysis 1=On or 0=Off HRVparams.sd.segmentlength = 300; % Default: 300, windows length in seconds %% 12. PRSA Analysis Settings HRVparams.prsa.on = 1; % Default: 1, PRSA Analysis 1=On or 0=Off HRVparams.prsa.win_length = 30; % Default: 30, The length of the PRSA signal % before and after the anchor points % (the resulting PRSA has length 2*L) HRVparams.prsa.thresh_per = 20; % Default: 20%, Percent difference that one beat can % differ from the next in the prsa code HRVparams.prsa.plot_results = 0; % Default: 0 HRVparams.prsa.scale = 2; % Default: 2, scale parameter for wavelet analysis (to compute AC and DC) %% 13. Peak Detection Settings % The following settings are for jqrs.m HRVparams.PeakDetect.REF_PERIOD = 0.250; % Default: 0.25 (should be 0.15 for FECG), refractory period in sec between two R-peaks HRVparams.PeakDetect.THRES = .6; % Default: 0.6, Energy threshold of the detector HRVparams.PeakDetect.fid_vec = []; % Default: [], If some subsegments should not be used for finding the optimal % threshold of the P&T then input the indices of the corresponding points here HRVparams.PeakDetect.SIGN_FORCE = []; % Default: [], Force sign of peaks (positive value/negative value) HRVparams.PeakDetect.debug = 0; % Default: 0 HRVparams.PeakDetect.ecgType = 'MECG'; % Default : MECG, options (adult MECG) or featl ECG (fECG) HRVparams.PeakDetect.windows = 15; % Befautl: 15,(in seconds) size of the window onto which to perform QRS detection %% 14. Entropy Settings % Multiscale Entropy HRVparams.MSE.on = 1; % Default: 1, MSE Analysis 1=On or 0=Off HRVparams.MSE.windowlength = []; % Default: [], windows size in seconds, default perform MSE on the entire signal HRVparams.MSE.increment = []; % Default: [], window increment HRVparams.MSE.RadiusOfSimilarity = 0.15; % Default: 0.15, Radius of similarity (% of std) HRVparams.MSE.patternLength = 2; % Default: 2, pattern length HRVparams.MSE.maxCoarseGrainings = 20; % Default: 20, Maximum number of coarse-grainings % SampEn an ApEn HRVparams.Entropy.on = 1; % Default: 1, MSE Analysis 1=On or 0=Off HRVparams.Entropy.RadiusOfSimilarity = 0.15; % Default: 0.15, Radius of similarity (% of std) HRVparams.Entropy.patternLength = 2; % Default: 2, pattern length %% 15. DFA Settings HRVparams.DFA.on = 1; % Default: 1, DFA Analysis 1=On or 0=Off HRVparams.DFA.windowlength = []; % Default [], windows size in seconds, default perform DFA on the entair signal HRVparams.DFA.increment = []; % Default: [], window increment HRVparams.DFA.minBoxSize = 4 ; % Default: 4, Smallest box width HRVparams.DFA.maxBoxSize = []; % Largest box width (default in DFA code: signal length/4) HRVparams.DFA.midBoxSize = 16; % Medium time scale box width (default in DFA code: 16) %% 16. Poincaré plot HRVparams.poincare.on = 1; % Default: 1, Poincare Analysis 1=On or 0=Off %% 17. Heart Rate Turbulence (HRT) - Settings HRVparams.HRT.on = 1; % Default: 1, HRT Analysis 1=On or 0=Off HRVparams.HRT.BeatsBefore = 2; % Default: 2, # of beats before PVC HRVparams.HRT.BeatsAfter = 16; % Default: 16, # of beats after PVC and CP HRVparams.HRT.GraphOn = 0; % Default: 0, do not plot HRVparams.HRT.windowlength = 24; % Default 24h, windows size in hours HRVparams.HRT.increment = 24; % Default 24h, sliding window increment in hours HRVparams.HRT.filterMethod = 'mean5before'; % Default mean5before, HRT filtering option %% 18. Output Settings HRVparams.gen_figs = 0; % Generate figures HRVparams.save_figs = 0; % Save generated figures if HRVparams.save_figs == 1 HRVparams.gen_figs = 1; end % Format settings for HRV Outputs HRVparams.output.format = 'csv'; % 'csv' - creates csv file for output % 'mat' - creates .mat file for output HRVparams.output.separate = 0; % Default : 1 = separate files for each subject % 0 = all results in one file HRVparams.output.num_win = []; % Specify number of lowest hr windows returned % leave blank if all windows should be returned % Format settings for annotations generated HRVparams.output.ann_format = 'binary'; % 'binary' = binary annotation file generated % 'csv' = ASCII CSV file generated %% 19. Filename to Save Data HRVparams.time = datestr(now, 'yyyymmdd'); % Setup time for filename of output HRVparams.filename = [HRVparams.time '_' project_name]; %% Export Parameter as Latex Table % Note that if you change the order of the parameters or add parameters % this might not work ExportHRVparams(HRVparams); end 
submitted by MisuzBrisby to matlab [link] [comments]

An introduction to Linux through Windows Subsystem for Linux

I'm working as an Undergraduate Learning Assistant and wrote this guide to help out students who were in the same boat I was in when I first took my university's intro to computer science course. It provides an overview of how to get started using Linux, guides you through setting up Windows Subsystem for Linux to run smoothly on Windows 10, and provides a very basic introduction to Linux. Students seemed to dig it, so I figured it'd help some people in here as well. I've never posted here before, so apologies if I'm unknowingly violating subreddit rules.

Getting Windows Subsystem for Linux running smoothly on Windows 10

GitHub Pages link

Introduction and motivation

tl;dr skip to next section
So you're thinking of installing a Linux distribution, and are unsure where to start. Or you're an unfortunate soul using Windows 10 in CPSC 201. Either way, this guide is for you. In this section I'll give a very basic intro to some of options you've got at your disposal, and explain why I chose Windows Subsystem for Linux among them. All of these have plenty of documentation online so Google if in doubt.

Setting up WSL

So if you've read this far I've convinced you to use WSL. Let's get started with setting it up. The very basics are outlined in Microsoft's guide here, I'll be covering what they talk about and diving into some other stuff.

1. Installing WSL

Press the Windows key (henceforth Winkey) and type in PowerShell. Right-click the icon and select run as administrator. Next, paste in this command:
dism.exe /online /enable-feature /featurename:Microsoft-Windows-Subsystem-Linux /all /norestart 
Now you'll want to perform a hard shutdown on your computer. This can become unecessarily complicated because of Window's fast startup feature, but here we go. First try pressing the Winkey, clicking on the power icon, and selecting Shut Down while holding down the shift key. Let go of the shift key and the mouse, and let it shutdown. Great! Now open up Command Prompt and type in
wsl --help 
If you get a large text output, WSL has been successfully enabled on your machine. If nothing happens, your computer failed at performing a hard shutdown, in which case you can try the age-old technique of just holding down your computer's power button until the computer turns itself off. Make sure you don't have any unsaved documents open when you do this.

2. Installing Ubuntu

Great! Now that you've got WSL installed, let's download a Linux distro. Press the Winkey and type in Microsoft Store. Now use the store's search icon and type in Ubuntu. Ubuntu is a Debian-based Linux distribution, and seems to have the best integration with WSL, so that's what we'll be going for. If you want to be quirky, here are some other options. Once you type in Ubuntu three options should pop up: Ubuntu, Ubuntu 20.04 LTS, and Ubuntu 18.04 LTS.
![Windows Store](https://theshepord.github.io/intro-to-WSL/docs/images/winstore.png) Installing plain-old "Ubuntu" will mean the app updates whenever a new major Ubuntu distribution is released. The current version (as of 09/02/2020) is Ubuntu 20.04.1 LTS. The other two are older distributions of Ubuntu. For most use-cases, i.e. unless you're running some software that will break when upgrading, you'll want to pick the regular Ubuntu option. That's what I did.
Once that's done installing, again hit Winkey and open up Ubuntu. A console window should open up, asking you to wait a minute or two for files to de-compress and be stored on your PC. All future launches should take less than a second. It'll then prompt you to create a username and password. I'd recommend sticking to whatever your Windows username and password is so that you don't have to juggle around two different usepassword combinations, but up to you.
Finally, to upgrade all your packages, type in
sudo apt-get update 
And then
sudo apt-get upgrade 
apt-get is the Ubuntu package manager, this is what you'll be using to install additional programs on WSL.

3. Making things nice and crispy: an introduction to UNIX-based filesystems

tl;dr skip to the next section
The two above steps are technically all you need for running WSL on your system. However, you may notice that whenever you open up the Ubuntu app your current folder seems to be completely random. If you type in pwd (for Present Working Directory, 'directory' is synonymous with 'folder') inside Ubuntu and hit enter, you'll likely get some output akin to /home/. Where is this folder? Is it my home folder? Type in ls (for LiSt) to see what files are in this folder. Probably you won't get any output, because surprise surprise this folder is not your Windows home folder and is in fact empty (okay it's actually not empty, which we'll see in a bit. If you type in ls -a, a for All, you'll see other files but notice they have a period in front of them, which tells bash that they should be hidden by default. Anyways).
So where is my Windows home folder? Is WSL completely separate from Windows? Nope! This is Windows Subsystem for Linux after all. Notice how, when you typed pwd earlier, the address you got was /home/. Notice that forward-slash right before home. That forward-slash indicates the root directory (not to be confused with the /root directory), which is the directory at the top of the directory hierarchy and contains all other directories in your system. So if we type ls /, you'll see what are the top-most directories in your system. Okay, great. They have a bunch of seemingly random names. Except, shocker, they aren't random. I've provided a quick run-down in Appendix A.
For now, though, we'll focus on /mnt, which stands for mount. This is where your C drive, which contains all your Windows stuff, is mounted. So if you type ls /mnt/c, you'll begin to notice some familiar folders. Type in ls /mnt/c/Users, and voilà, there's your Windows home folder. Remember this filepath, /mnt/c/Users/. When we open up Ubuntu, we don't want it tossing us in this random /home/ directory, we want our Windows home folder. Let's change that!

4. Changing your default home folder

Type in sudo vim /etc/passwd. You'll likely be prompted for your Ubuntu's password. sudo is a command that gives you root privileges in bash (akin to Windows's right-click then selecting 'Run as administrator'). vim is a command-line text-editing tool, kinda like an even crummier Notepad, which is a pain to use at first but bear with me and we can pull through. /etc/passwd is a plaintext file that does not store passwords, as the name would suggest, but rather stores essential user info used every time you open up WSL.
Anyway, once you've typed that in, your shell should look something like this: ![vim /etc/passwd](https://theshepord.github.io/intro-to-WSL/docs/images/vim-etc-passwd.png)
Using arrow-keys, find the entry that begins with your Ubuntu username. It should be towards the bottom of the file. In my case, the line looks like
theshep:x:1000:1000:,,,:/home/pizzatron3000:/bin/bash 
See that cringy, crummy /home/pizzatron3000? Not only do I regret that username to this day, it's also not where we want our home directory. Let's change that! Press i to initiate vim's -- INSERT -- mode. Use arrow-keys to navigate to that section, and delete /home/ by holding down backspace. Remember that filepath I asked you to remember? /mnt/c/Users/. Type that in. For me, the line now looks like
theshep:x:1000:1000:,,,:/mnt/c/Users/lucas:/bin/bash 
Next, press esc to exit insert mode, then type in the following:
:wq 
The : tells vim you're inputting a command, w means write, and q means quit. If you've screwed up any of the above sections, you can also type in :q! to exit vim without saving the file. Just remember to exit insert mode by pressing esc before inputting commands, else you'll instead be writing to the file.
Great! If you now open up a new terminal and type in pwd, you should be in your Window's home folder! However, things seem to be lacking their usual color...

5. Importing your configuration files into the new home directory

Your home folder contains all your Ubuntu and bash configuration files. However, since we just changed the home folder to your Window's home folder, we've lost these configuration files. Let's bring them back! These configuration files are hidden inside /home/, and they all start with a . in front of the filename. So let's copy them over into your new home directory! Type in the following:
cp -r /home//* ~ 
cp stands for CoPy, -r stands for recursive (i.e. descend into directories), the * is a Kleene Star and means "grab everything that's here", and the ~ is a quick way of writing your home directory's filepath (which would be /mnt/c/Users/) without having to type all that in again. Once you've run this, all your configuration files should now be present in your new home directory. Configuration files like .bashrc, .profile, and .bash_profile essentially provides commands that are run whenever you open a new shell. So now, if you open a new shell, everything should be working normally. Amazing. We're done!

6. Tips & tricks

Here are two handy commands you can add to your .profile file. Run vim ~/.profile, then, type these in at the top of the .profile file, one per line, using the commands we discussed previously (i to enter insert mode, esc to exit insert mode, :wq to save and quit).
alias rm='rm -i' makes it so that the rm command will always ask for confirmation when you're deleting a file. rm, for ReMove, is like a Windows delete except literally permanent and you will lose that data for good, so it's nice to have this extra safeguard. You can type rm -f to bypass. Linux can be super powerful, but with great power comes great responsibility. NEVER NEVER NEVER type in rm -rf /, this is saying 'delete literally everything and don't ask for confirmation', your computer will die. You've been warned. Be careful.
export DISPLAY=:0 if you install XLaunch VcXsrv, this line allows you to open graphical interfaces through Ubuntu. The export sets the environment variable DISPLAY, and the :0 tells Ubuntu that it should use the localhost display.

Appendix A: overview of top-level UNIX directories

tl;dr only mess with /mnt, /home, and maybe maybe /usr. Don't touch anything else.
  • bin: binaries, contains Ubuntu binary (aka executable) files that are used in bash. Here you'll find the binaries that execute commands like ls and pwd. Similar to /usbin, but bin gets loaded earlier in the booting process so it contains the most important commands.
  • boot: contains information for operating system booting. Empty in WSL, because WSL isn't an operating system.
  • dev: devices, contains information for Ubuntu to communicate with I/O devices. One useful file here is /dev/null, which is basically an information black hole that automatically deletes any data you pass it.
  • etc: no idea why it's called etc, but it contains system-wide configuration files
  • home: equivalent to Window's C:/Users folder, contains home folders for the different users. In an Ubuntu system, under /home/ you'd find the Documents folder, Downloads folder, etc.
  • lib: libraries used by the system
  • lib64 64-bit libraries used by the system
  • mnt: mount, where your drives are located
  • opt: third-party applications that don't have any dependencies outside the scope of their own package
  • proc: process information, contains details about your Linux system, kind of like Windows's C:/Windows folder
  • run: directory for programs to store runtime information. Similarly to /bin vs /usbin, run has the same function as /varun, but gets loaded sooner in the boot process.
  • srv: server folder, holds data to be served in protocols like ftp, www, cvs, and others
  • sys: system, used by the Linux kernel to set or obtain information about the host system
  • tmp: temporary, runtime files that are cleared out after every reboot. Kinda like RAM in that way.
  • usr: contains additional UNIX commands, header files for compiling C programs, among other things. Most of everything you install using apt-get ends up here.
  • var: variable, contains variable data such as logs, databases, e-mail etc, but that persist across different boots.

Appendix B: random resources

submitted by HeavenBuilder to learnprogramming [link] [comments]

Binary Options Review; Best Binary Options Brokers

Binary Options Review; Best Binary Options Brokers

Binary Options Review; Best Binary Options Brokers
We have compared the best regulated binary options brokers and platforms in May 2020 and created this top list. Every binary options company here has been personally reviewed by us to help you find the best binary options platform for both beginners and experts. The broker comparison list below shows which binary trading sites came out on top based on different criteria.
You can put different trading signals into consideration such as using payout (maximum returns), minimum deposit, bonus offers, or if the operator is regulated or not. You can also read full reviews of each broker, helping you make the best choice. This review is to ensure traders don't lose money in their trading account.
How to Compare Brokers and Platforms
In order to trade binary options, you need to engage the services of a binary options broker that accepts clients from your country e.g. check US trade requirements if you are in the United States. Here at bitcoinbinaryoptionsreview.com, we have provided all the best comparison factors that will help you select which trading broker to open an account with. We have also looked at our most popular or frequently asked questions, and have noted that these are important factors when traders are comparing different brokers:
  1. What is the Minimum Deposit? (These range from $5 or $10 up to $250)
  2. Are they regulated or licensed, and with which regulator?
  3. Can I open a Demo Account?
  4. Is there a signals service, and is it free?
  5. Can I trade on my mobile phone and is there a mobile app?
  6. Is there a Bonus available for new trader accounts? What are the Terms and
  7. conditions?
  8. Who has the best binary trading platform? Do you need high detail charts with technical analysis indicators?
  9. Which broker has the best asset lists? Do they offer forex, cryptocurrency, commodities, indices, and stocks – and how many of each?
  10. Which broker has the largest range of expiry times (30 seconds, 60 seconds, end of the day, long term, etc?)
  11. How much is the minimum trade size or amount?
  12. What types of options are available? (Touch, Ladder, Boundary, Pairs, etc)
  13. Additional Tools – Like Early closure or Metatrader 4 (Mt4) plugin or integration
  14. Do they operate a Robot or offer automated trading software?
  15. What is Customer Service like? Do they offer telephone, email and live chat customer support – and in which countries? Do they list direct contact details?
  16. Who has the best payouts or maximum returns? Check the markets you will trade.
The Regulated Binary Brokers
Regulation and licensing is a key factor when judging the best broker. Unregulated brokers are not always scams, or untrustworthy, but it does mean a trader must do more ‘due diligence’ before trading with them. A regulated broker is the safest option.
Regulators - Leading regulatory bodies include:
  • CySec – The Cyprus Securities and Exchange Commission (Cyprus and the EU)
  • FCA – Financial Conduct Authority (UK)
  • CFTC – Commodity Futures Trading Commission (US)
  • FSB – Financial Services Board (South Africa)
  • ASIC – Australia Securities and Investment Commission
There are other regulators in addition to the above, and in some cases, brokers will be regulated by more than one organization. This is becoming more common in Europe where binary options are coming under increased scrutiny. Reputable, premier brands will have regulation of some sort.
Regulation is there to protect traders, to ensure their money is correctly held and to give them a path to take in the event of a dispute. It should therefore be an important consideration when choosing a trading partner.
Bonuses - Both sign up bonuses and demo accounts are used to attract new clients. Bonuses are often a deposit match, a one-off payment, or risk-free trade. Whatever the form of a bonus, there are terms and conditions that need to be read.
It is worth taking the time to understand those terms before signing up or clicking accept on a bonus offer. If the terms are not to your liking then the bonus loses any attraction and that broker may not be the best choice. Some bonus terms tie in your initial deposit too. It is worth reading T&Cs before agreeing to any bonus, and worth noting that many brokers will give you the option to ‘opt-out’ of taking a bonus.
Using a bonus effectively is harder than it sounds. If considering taking up one of these offers, think about whether, and how, it might affect your trading. One common issue is that turnover requirements within the terms, often cause traders to ‘over-trade’. If the bonus does not suit you, turn it down.
How to Find the Right Broker
But how do you find a good broker? Well, that’s where BitcoinBinaryOptionsReview.com comes in. We assess and evaluate binary options brokers so that traders know exactly what to expect when signing up with them. Our financial experts have more than 20 years of experience in the financial business and have reviewed dozens of brokers.
Being former traders ourselves, we know precisely what you need. That’s why we’ll do our best to provide our readers with the most accurate information. We are one of the leading websites in this area of expertise, with very detailed and thorough analyses of every broker we encounter. You will notice that each aspect of any broker’s offer has a separate article about it, which just goes to show you how seriously we approach each company. This website is your best source of information about binary options brokers and one of your best tools in determining which one of them you want as your link to the binary options market.
Why Use a Binary Options Trading Review?
So, why is all this relevant? As you may already know, it is difficult to fully control things that take place online. There are people who only pose as binary options brokers in order to scam you and disappear with your money. True, most of the brokers we encounter turn out to be legit, but why take unnecessary risks?
Just let us do our job and then check out the results before making any major decisions. All our investigations regarding brokers’ reliability can be seen if you click on our Scam Tab, so give it a go and see how we operate. More detailed scam reports than these are simply impossible to find. However, the most important part of this website can be found if you go to our Brokers Tab.
There you can find extensive analyses of numerous binary options brokers irrespective of your trading strategy. Each company is represented with an all-encompassing review and several other articles dealing with various aspects of their offer. A list containing the very best choices will appear on your screen as you enter our website whose intuitive design will allow you to access all the most important information in real-time.
We will explain minimum deposits, money withdrawals, bonuses, trading platforms, and many more topics down to the smallest detail. Rest assured, this amount of high-quality content dedicated exclusively to trading cannot be found anywhere else. Therefore, visiting us before making any important decisions regarding this type of trading is the best thing to do.
CONCLUSION: Stay ahead of the market, and recover from all kinds of binary options trading loss, including market losses in bitcoin, cryptocurrency, and forex markets too. Send your request via email to - expressrecoverypro@yahoo.com
submitted by Babyelijah to u/Babyelijah [link] [comments]

IKEv2 IPSec VPN when Fortigate is behind NAT

I'm trying to do an IKEv2 IPSec VPN. The FortiGate is behind NAT, with udp/500 and udp/4500 forwarded. This is a Fortigate FG60-E, software version 6.2.3
By default, the Fortigate will send its non-routable WAN1 IP address (i.e. 192.168.1.100) as its identity, as which causes negotiation to fail because the other side was expecting the public IP. So on the FortiGate under phase 1 settings -> Local ID field, I enter the public IP. But negotiation still fails because it sends the IP address as an FQDN. Here's a sample debug from a cisco router on the other side:
Jul 16 21:33:19.756: IKEv2:(SESSION ID = 44833,SA ID = 2):Stopping timer to wait for auth message Jul 16 21:33:19.756: IKEv2:(SESSION ID = 44833,SA ID = 2):Checking NAT discovery Jul 16 21:33:19.756: IKEv2:(SESSION ID = 44833,SA ID = 2):NAT INSIDE found Jul 16 21:33:19.756: IKEv2:(SESSION ID = 44833,SA ID = 2):NAT detected float to init port 4500, resp port 4500 Jul 16 21:33:19.756: IKEv2:(SESSION ID = 44833,SA ID = 2):Searching policy based on peer's identity '203.0.113.100' of type 'FQDN' Jul 16 21:33:19.756: IKEv2-ERROR:% IKEv2 profile not found Jul 16 21:33:19.757: IKEv2-ERROR:(SESSION ID = 44833,SA ID = 2):: Failed to locate an item in the database 
So I need to tell the FortiGate to still override the local identity, but as IP address, not FQDN.
On Palo Alto, there's a drop-down menu to choose the identity type. Options are:
Where is the equivalent option on a FortiGate? On a Cisco router, you'd likewise use the statement "identity local address" in the IKEv2 profile, which indicates IP address.
Related Forums post:
Unable to configure behind-NAT Fortigate IPsec VPN with GCP
submitted by greenlakejohnny to fortinet [link] [comments]

more related issues


more related issues
in the conversion of old and new systems, the most difficult one is uuuuuuuuuuuuuuu.

  1. Among the following options, the one that does not belong to the combination of two parameters, one change and three combinations:
    the form control that can accept numerical data input is.

Internal gateway protocol is divided into: distance vector routing protocol, and hybrid routing protocol.

Firewall can prevent the transmission of infected software or files
among the following coupling types, the lowest coupling degree is ().

The () property of the Navigator object returns the platform and version information of the browser.

What are the main benefits of dividing IP subnets? ()
if users want to log in to the remote server and become a simulation terminal of the remote server temporarily, they can use the
[26-255] software life cycle provided by the remote host, which means that most operating systems, such as DOS, windows, UNIX, etc., adopt tree structureFolder structure.

An array is a group of memory locations related by the fact that they all have __________ name and __________ Type.
in Windows XP, none of the characters in the following () symbol set can form a file name. [2008 vocational college]
among the following options, the ones that do not belong to the characteristics of computer viruses are:
in the excel 2010 cell Format dialog box, the nonexistent tab is
the boys___ The teacher talked to are from class one.
for an ordered table with length of 18, if the binary search is used, the length of the search for the 15th element is ().

SRAM memory is______ Memory.

() is a website with certain complementary advantages. It places the logo or website name of the other party's website on its own website, and sets the hyperlink of each other's website, so that users can find their own website from the cooperative website and achieve the purpose of mutual promotion.

  1. Accounting qualification is managed by information technology ()
    which of the following devices can forward the communication between different VLANs?

The default port number of HTTP hypertext transfer protocol is:
forIn the development method of object, () will be the dominant standard modeling language in the field of object-oriented technology.

When you visit a website, what is the first page you see?

File D:\\ city.txt The content is as follows: Beijing Tianjin Shanghai Chongqing writes the following event process: privatesub form_ click() Dim InD Open \d:\\ city.txt \For input as ? 1 do while not EOF (1) line input ? 1, Ind loop close 1 print ind End Sub run the program, click the form, and the output result is.

When users use dial-up telephone lines to access the Internet, the most commonly used protocol is.

In the I2C system, the main device is usually taken by the MCU with I2C bus interface, and the slave device must have I2C bus interface.

The basic types of market research include ()
the function of the following program is: output all integers within 100 that can be divisible by 3 and have single digits of 6. What should be filled in the underline is (). 56b33287e4b0e85354c031b5. PNG
the infringement of the scope of intellectual property rights is:
multimedia system is a computer that can process sound and image interactivelySystem.

In order to allow files of different users to have the same file name, () is usually used in the file system.

The following () effects are not included in PowerPoint 2010 animation effects.

Macro virus can infect________ Documents.

The compiled Java program can be executed directly.

In PowerPoint, when adding text to a slide with AutoShape, how to indicate that text can be edited on the image when an AutoShape is selected ()
organizational units can put users, groups, computers and other units into the container of the active directory.

Ethernet in LAN adopts the combination technology of packet switching and circuit switching. ()
interaction designers need to design information architecture and interface details.

In the process of domain name resolution, the local domain name server queries the root domain name server by using the search method.

What stage of e-commerce system development life cycle does data collection and processing preparation belong to?

Use the "ellipse" tool on the Drawing toolbar of word, press the () key and drag the mouse to draw a circle.

The proportion of a country's reserve position in the IMF, including the convertible currency part of the share subscribed by Member States to the IMF, and the portion that can be paid in domestic currency, respectively.

  1. When installing Windows 7 operating system, the system disk partition must be in format before installation.

High rise buildings, public places of entertainment and other decoration, in order to prevent fire should be used____。 ()
with regard to the concept of area in OSPF protocol, what is wrong in the following statements is ()
suppose that the channel bandwidth is 4000Hz and the modulation is 256 different symbols. According to the Nyquist theorem, the data rate of the ideal channel is ()
which of the following is the original IEEE WLAN standard ()?

What is correct about data structure is:
the key deficiency of waterfall model is that ().

The software development mode with almost no product plan, schedule and formal development process is
in the following description of computers, the correct one is ﹥
Because human eyes are sensitive to chroma signal, the sampling frequency of luminance signal can be lower than that of chroma signal when video signal is digitized, so as to reduce the amount of digital video data.

[47-464] what is correct in the following statements is
ISO / IEC WG17 is responsible for the specific drafting, discussion, amendment, formulation, voting and publication of the final ISO international standards for iso14443, iso15693 and iso15693 contactless smart lock manufacturers smart card standards.

Examples of off - balance - sheet activities include _________

The correct description of microcomputer is ().

Business accident refers to the accident caused by the failure of operation mechanism of tourism service department. It can be divided into ().

IGMP Network AssociationWhat is the function of the discussion?

Using MIPS as the unit to measure the performance of the computer, it refers to the computer______

In the excel workbook, after executing the following code, the value of cell A3 of sheet 1 is________ Sub test1() dim I as integer for I = 1 to 5 Sheet1. Range (\ \ a \ \ & I) = I next inend sub
What are the characteristics of electronic payment compared with traditional payment?

When the analog signal is encoded by linear PCM, the sampling frequency is 8kHz, and the code energy control unit is 8 bits, then the information transmission rate is ()
  1. The incorrect discussion about the force condition of diesel engine connecting rod is.

Software testing can be endless.

The game software running on the windows platform of PC is sent to the mobile phone of Android system and can run normally.

The following is not true about the video.

The way to retain the data in the scope of request is ()
distribution provides the basis and support for the development of e-commerce.

  1. Which of the following belong to the content of quality control in the analysis
    1. During the operation of a program, the CNC system appears "soft limit switch overrun", which belongs to
    2. The wrong description of the gas pipe is ()
    3. The following statement is wrong: ()
    the TCP / IP protocol structure includes () layer.

Add the records in table a to table B, and keep the original records in table B. the query that should be used is.

For additives with product anti-counterfeiting certification mark, after confirming that the product is in conformity with the factory quality certificate and the real object, one copy () shall be taken and pasted on the ex factory quality certificate of the product and filed together.

() accounts are disabled by default.

A concept of the device to monitor a person's bioparameters is that it should.
  1. For the cephalic vein, the wrong description is
    an image with a resolution of 16 pixels × 16 pixels and a color depth of 8 bits, with the data capacity of at least______ Bytes. (0.3 points)
  2. What are the requirements for the power cord of hand-held electric tools?

In the basic mode of electronic payment, credit card belongs to () payment system.

The triode has three working states: amplification, saturation and cut-off. In the digital circuit, when the transistor is used as a switch, it works in two states of saturation or cut-off.

Read the attached article and answer the following: compared with today's music, those of the past
() refers to the subjective conditions necessary for the successful completion of an activity.

In the OSI reference model, what is above the network layer is_______ 。

The decision tree corresponding to binary search is not only a binary search tree, but also an ideal balanced binary tree. In order to guide the interconnection, interoperability and interoperability of computer networks, ISO has issued the OSI reference model, and its basic structure is divided into
26_______ It belongs to the information system operation document.

In C ? language, the following operators have the highest priority___ ?
the full Chinese name of BPR is ()
please read the following procedures: dmain() {int a = 5, B = 0, C = 0; if (a = B + C) printf (\ * * \ n \); else printf (\ $$n \);} the above programs
() software is not a common tool for web page making.

When a sends a message to B, in order to achieve security, a needs to encrypt the message with ().

The Linux exchange partition is used to save the visited web page files.

  1. Materials consumed by the basic workshop may be included in the () cost item.

The coverage of LAN is larger than that of Wan.

Regarding the IEEE754 standard of real number storage, the wrong description is______

Task 4: convert decimal number to binary, octal and hexadecimal number [Topic 1] (1134.84375) 10 = () 2=()8 = () 16
the purpose of image data compression is to ()
in IE browser, to view the frequently visited sites that have been saved, you need to click.

  1. When several companies jointly write a document, the document number of each company should be quoted in the header at the same time. ()
    assuming that the highest frequency of analog signal is 10MHz, and the sampling frequency must be greater than (), then the sample signal can not be distorted.

The incredible performing artist from Toronto.
in access, the relationship between a table and a database is.

In word 2010, the following statement about the initial drop is correct.

Interrupt service sub function does not need to be called in the program, but after applying for interrupt, the CPU automatically finds the corresponding program according to the interrupt number.

Normal view mode is the default view mode for word documents.

A common variable is defined as follows: Union data {int a; int b; float C;} data; how much memory space does the variable data occupy in VC6.0?

______ It is not a relational database management system.

In the basic model of decision support system, what is in the core position is:
among the following key factors of software outsourcing projects, () is the factor that affects the final product quality and production efficiency of software outsourcing.

Word Chinese textThe shortcut for copying is ().
submitted by Amanda2020-jumi to u/Amanda2020-jumi [link] [comments]

System Programming Language Ideas

I am an embedded electronics guy who has several years of experience in the industry, mainly with writing embedded software in C at the high level and the low level. My goal is to start fresh with some projects in terms of software platforms, so I have been looking at whether to use existing programming languages. I want my electronics / software to be open, but therein lies part of the problem. I have experience using and evaluating many compilers during my experience such as the proprietary stuff (IAR) and open source stuff (clang , gcc, etc.). I have nothing against the open source stuff; however, the companies I have worked for (and I) always come crawling back to IAR. Why? Its not a matter of the compiler believe it or not! Its a matter of the linker.
I took a cursory look at the latest gnu / clang linkers and I do not think that have fixed the major issue we always had with these linkers: memory flood fill. Specifying where each object or section is in the memory is fine for small projects or very small teams (1 to 2 people). However, when you have a bigger team (> 2) and you are using microcontrollers with segmented memory (all memory blocks are not contiguous), memory flood fill becomes a requirement of the linker. Often is the case that the MCUs I and others work on do not have megabytes of memory, but kilobytes. The MCU is chosen for the project and if we are lucky to get one with lots of memory, then you know why such a chip was chosen - there is a large memory requirement in the software.. we would not choose a large memory part if we did not need it due to cost. Imagine a developer is writing a library or piece of code whose memory requirement is going to change by single or tens kilobytes each (added or subtracted) commit. Now imagine having to have this developer manually manage the linker script for their particular dev station each time to make sure the linker doesn't cough based on what everybody else has put it in there. On top of that, they need to manually manage the script if it needs to be changed when they commit and hope that nobody else needed to change it as well for whatever they were developing. For even a small amount of developers, manually managing the script has way too many moving parts to be efficient. Memory flood fill solves this problem. IAR (in addition to a few other linkers like Segger's) allow me to just say: "Here are the ten memory blocks on the device. I have a .text section. You figure out how to spread out all the data across those blocks." No manual script modifications required by each developer for their current dev or requirement to sync at the end when committing. It just works.
Now.. what's the next problem? I don't want to use IAR (or Segger)! Why? If my stuff is going to be open to the public on my repositories.. don't you think it sends the wrong message if I say: "Well, here is the source code everybody! But Oh sorry, you need to get a seat of IAR if you want to build it the way I am or figure out how to build it yourself with your own tool chain". In addition, let's say that we go with Segger's free stuff to get by the linker problem. Well, what if I want to make a sellable product based on the open software? Still need to buy a seat, because Segger only allows non commercial usage of their free stuff. This leaves me with using an open compiler.
To me, memory flood fill for the linker is a requirement. I will not use a C tool chain that does not have this feature. My compiler options are clang, gcc, etc. I can either implement a linker script generator or a linker itself. Since I do not need to support dynamic link libraries or any complicated virtual memory stuff in the linker, I think implementing a linker is easily doable. The linker script generator is the simple option, but its a hack and therefore I would not want to partake in it. Basically before the linker (LD / LLD) is invoked, I would go into all the object files and analyze all of their memory requirements and generate a linker script that implements the flood fill as a pre step. Breaking open ELF files and analyzing them is pretty easy - I have done it in the past. The pre step would have my own linker script format that includes provisions for memory flood fill. Since this is like invoking the linker twice.. its a hack and speed detriment for something that I think should have been a feature of LD / LLD decades ago. "Everybody is using gnu / clang with LD / LLD! Why do you think you need flood fill?" To that I respond with: "People who are using gnu / clang and LD / LLD are either on small teams (embedded) OR they are working with systems that have contiguous memory and don't have to worry about segmented memory. Case and point Phones, Laptops, Desktops, anything with external RAM" Pick one reason. I am sure there are other reasons beyond those two in which segmented memory is not an issue. Maybe the segmented memory blocks are so large that you can ignore most of them for one program - early Visual GDB had this issue.. you would go into the linker scripts to find that for chips like the old NXP 4000 series that they were only choosing a single RAM block for data memory because of the linker limitation. This actually horrendously turned off my company from using gnu / clang at the time. In embedded systems where MCUs are chosen based on cost, the amount of memory is specifically chosen to meet that cost. You can't just "ignore" a memory block due to linker limitations. This would require either to buy a different chip or more expensive chip that meets the memory requirements.
ANYWAYS.. long winded prelude to what has led me to looking at making my own programming language. TLDR: I want my software to be open.. I want people to be able to easily build it without shelling out an arm and a leg, and I am a person who is not fond of hacks because of, what I believe, are oversights in the design of existing software.
Why not use Rust, Nim, Go, Zig, any of those languages? No. Period. No. I work with small embedded systems running with small memory microcontrollers as well as a massive number of other companies / developers. Small embedded systems are what make most of the world turn. I want a systems programming language that is as simple as C with certain modern developer "niceties". This does not mean adding the kitchen sink.. generics, closures, classes ................ 50 other things because the rest of the software industry has been using these for years on higher level languages. It is my opinion that the reason that nothing has (or will) displace C in the past, present, or near future is because C is stupid simple. Its basically structures, functions, and pointers... that's it! Does it have its problems? Sure! However, at the end of the day developers can pick up a C program and go without a huge hassle. Why can't we have a language that sticks to this small subset or "core" functionality instead of trying to add the kitchen sink with all these features of other languages? Just give me my functions and structures, and iterate on that. Let's fix some of the developer productivity issues while we are at it.. and no I don't mean by adding generics and classes. I mean more of getting rid of header files and allowing CTFE. "D is what you want." No.. no it's not. That is a prime example of kitchen sink and the kitchen sink of 50 large corporations across the the block.
What are the problems I think need to be solved in a C replacement?
  1. Header files.
  2. Implementation hiding. Don't know the size of that structure without having to manually manage the size of that structure in a header or exposing all the fields of that structure in a header. Every change of the library containing that structure causes a recompile all the way up the chain on all dependencies.
  3. CTFE (compile time function execution). I want to be able to assign type safe constants to things on initialization.
  4. Pointers replaced with references? I am on the fence with this one. I love the power of pointers, but I realize after research where the industry is trying to go.
These are the things I think that need to be solved. Make my life easier as a developer, but also give me something as stupid simple as C.
I have some ideas of how to solve some of these problems. Disclaimer: some things may be hypocritical based on the prelude discussion; however, as often is the case, not 'every' discussion point is black and white.

  1. Header Files
Replace with a module / package system. There exists a project folder wherein there lies a .build script. The compiler runs the build script and builds the project. Building is part of the language / compiler, but dependency and versioning is not. People will be on both sides of the camp.. for or against this. However, it appears that most module type languages require specifying all of the input files up front instead of being able to "dumb compile" like C / C++ due to the fact that all source files are "truly" dumbly independent. Such a module build system would be harder to make parallel due to module dependencies; however, in total, required build "computation" (not necessarily time) is less. This is because the compiler knows everything up front that makes a library and doesn't have to spawn a million processes (each taking its own time) for each source file.
  1. Implementation hiding
What if it was possible to make a custom library format for the language? Libraries use this custom format and contain "deferrals" for a lot of things that need to be resolved. During packaging time, the final output stage, link time, whatever you want to call it (the executable output), the build tool resolves all of the deferrals because it now knows all parts of input "source" objects. What this means is that the last stage of the build process will most likely take the longest because it is also the stage that generates the code.
What is a deferral? Libraries are built with type information and IR like code for each of the functions. The IR code is a representation that can be either executed by interpreter (for CTFE) or converted to binary instructions at the last output stage. A deferral is a node within the library that requires to be resolved at the last stage. Think of it like an unresolved symbol but for mostly constants and structures.
Inside my library A I have a structure that has a bunch of fields. Those fields may be public or private. Another library B wants to derive from that structure. It knows the structure type exists and it has these public fields. The library can make usage of those public fields. Now at the link stage the size of the structure and all derivative structures and fields are resolved. A year down the road library A changes to add a private field to the structure. Library B doesn't care as long as the type name of the structure or its public members that it is using are not changed. Pull in the new library into the link stage and everything is resolved at that time.
I am an advocate for just having plain old C structures but having the ability to "derive" sub structures. Structures would act the same exact way as in C. Let's say you have one structure and then in a second structure you put the first field as the "base" field. This is what I want to have the ability to do in a language.. but built in support for it through derivation and implementation hiding. Memory layout would be exactly like in C. The structures are not classes or anything else.
I have an array of I2C ports in a library; however, I have no idea how many I2C ports there should be until link time. What to do!? I define a deferred constant for the size of the array that needs to be resolved at link time. At link time the build file passes the constant into the library. Or it gets passed as a command line argument.
What this also allows me to do is to provide a single library that can be built using any architecture at link time.
  1. CTFE
Having safe type checked ways to define constants or whatever, filled in by the compiler, I think is a very good mechanism. Since all of the code in libraries is some sort of IR, it can be interpreted at link time to fill in all the blanks. The compiler would have a massive emphasis on analyzing which things are constants in the source code and can be filled in at link time.
There would exist "conditional compilation" in that all of the code exists in the library; however, at link time the conditional compilation is evaluated and only the areas that are "true" are included in the final output.
  1. Pointers & References & Type safety
I like pointers, but I can see the industry trend to move away from them in newer languages. Newer languages seem to kneecap them compared to what you can do in C. I have an idea of a potential fix.
Pointers or some way is needed to be able to access hardware registers. What if the language had support for references and pointers, but pointers are limited to constants that are filled in by the build system? For example, I know hardware registers A, B, and C are at these locations (maybe filled in by CTFE) so I can declare them as constants. Their values can never be changed at runtime; however, what a pointer does is indicate to the compiler to access a piece of memory using indirection.
There would be no way to convert a pointer to a reference or vise versa. There is no way to assign a pointer to a different value or have it point anything that exists (variables, byte arrays, etc..). Then how do we perform a UART write with a block of data? I said there would be no way to convert a reference ( a byte array for example) to a pointer, but I did not say you could not take the address of a reference! I can take the address of a reference (which points to a block of variable memory) and convert to it to an integer. You can perform any math you want with that integer but you can't actually convert that integer back into a reference! As far as the compiler is concerned, the address of a reference is just integer data. Now I can pass that integer into a module that contains a pointer and write data to memory using indirection.
As far as the compiler is concerned, pointers are just a way to tell the compiler to indirectly read and write memory. It would treat pointers as a way to read and write integer data to memory by using indirection. There exists no mechanism to convert a pointer to a reference. Since pointers are essentially constants, and we have deferrals and CTFE, the compiler knows what all those pointers are and where they point to. Therefore it can assure that no variables are ever in a "pointed to range". Additionally, for functions that use pointers - let's say I have a block of memory where you write to each 1K boundary and it acts as a FIFO - the compiler could check to make sure you are not performing any funny business by trying to write outside a range of memory.
What are references? References are variables that consist of say 8 bytes of data. The first 4 bytes are an address and the next 4 bytes is type information. There exists a reference type (any) that be used for assigning any type to it (think void*). The compiler will determine if casts are safe via the type information and for casts it can't determine at build time, it will insert code to check the cast using the type information.
Functions would take parameters as ByVal or ByRef. For example DoSomething(ByRef ref uint8 val, uint8 val2, uint8[] arr). The first parameter is passing by reference a reference to a uint8 (think double pointer). Assigning to val assigns to the reference. The second parameter is passed by value. The third parameter (array type) is passed by reference implicitly.
  1. Other Notes
This is not an exhaustive list of all features I am thinking of. For example visibility modifiers - public, private, module for variables, constants, and functions. Additionally, things could have attributes like in C# to tell the compiler what to do with a function or structure. For example, a structure or field could have a volatile attribute.
I want integration into the language for inline assembly for the architecture. So you could place a function attribute like [Assembly(armv7)]. This could tell the compiler that the function is all armv7 assembly and the compiler will verify it. Having assembly integrated also allows all the language features to be available to the assembly like constants. Does this go against having an IR representation of the library? No. functions have weak or strong linkage. Additionally, there could be a function attribute to tell the compiler: "Hey when the link stage is using an armv7 target, build this function in". There could also be a mechanism for inline assembly and intrinsics.
Please keep in mind that my hope is not to see another C systems language for larger systems (desktop, phones, laptops, etc.) Its solely to see it for small embedded systems and microcontrollers. I think this is why many of the newer languages (Go, Nim, Zig, etc..) have not been adopted in embedded - they started large and certain things were tacked on to "maybe" support smaller devices. I also don't want to have a runtime with my embedded microcontroller; however, I am not averse to the compiler putting bounds checks and casting checks into the assembly when it needs to. For example, if a cast fails, the compiler could just trap in a "hook" defined by the user that includes the module and line number of where the cast failed. It doesn't even matter that the system hangs or locks up as long as I know where to look to fix the bug. I can't tell you how many times something like this would be invaluable for debugging. In embedded, many of us say that its better for the system to crash hard than limp along because of an array out of bounds or whatever. Maybe it would be possible to restart the system in the event of such a crash or do "something" (like for a cruise missile :)).
This is intended to be a discussion and not so much a religious war or to state I am doing this or that. I just wanted to "blurt out" some stuff I have had on my mind for awhile.
submitted by LostTime77 to ProgrammingLanguages [link] [comments]

binary options trading

The vfxAlert software provides a full range of analytical tools online, a convenient interface for working in the broker’s trading platform. In one working window, we show the most necessary data in order to correctly assess the situation on the market. The vfxAlert software includes direct binary signals, online charts, trend indicator, market news, the ability to work with any broker. Also for our subscribers, we offer services for sending signals to telegram messenger and additional analytical and statistical information. You can use binary options signals online, in a browser window, without downloading the vfxAlert application.
https://vfxalert.com/en?&utm_source=links
submitted by binaryoptionstra to u/binaryoptionstra [link] [comments]

Mega Unpopular Opinion: Take-home projects can be great!

Ah, I have been debating whether or not I wanted to write this for a while now, but after seeing a few recent threads with 10-50 comments unanimously hating on take-home projects, I figured I would share my opinion.
Some of you may not read until the end, so let me preface this by saying not all take-home projects are great. I am on your side in that you should not complete a take-home project if any of the following are true:
...

With that being said, I will now move on to why I think take-home projects can be great.
For starters, it weeds out sooooo much of the competition. If you look at some job postings on LinkedIn, they can have 200+ applicants in 24 hours, and that is not even accounting for people who find the job via other means (i.e. other job boards, company website, etc). Thats a lot of applicants. Now, I know better than to assume that this subreddit is representative of the whole software industry, but clearly a take-home project potentially gets candidates TO WEED THEMSELVES OUT. So 200 candidates may have applied, but now you're competing with a significantly smaller percentage of people who actually wanted to take the time and do the take-home project. Your odds are much better now.
Now, I know exactly what you're thinking. You don't want to spend the 8-12 hours it would take to complete this take-home project, and you'd rather spend your time casting your net farther and shotgunning your resume out to more companies, but WHY NOT BOTH? You're the one looking for a job, and you are really not in the position to weed yourself out of potential employment. Some of you people have been on the hunt for a job for months and still won't stoop down to the level of giving a company that much time without being guaranteed another interview / a job. New-flash, doing a project increases your chance of getting a job, just like shotgunning your resume AND you get to practice / show off your programming skills (who knows, maybe mess around a make a project you can put on your GitHub as a sample of your work for other employers to see). On top of this, if you are someone with a lot of free-time - I'm looking at you new grads - and don't have a family/responsibilities that you need to take care of, then you really can't complain about time. Let's face it, instead of doing this project, you're watching Silicon Valley on HBO for the third time "to relax" after a "long day" of filling out the same Workday application forms. Come on, searching for a full time job should be a 40hwk job in and of itself.
My next point is that these take home projects sometimes substitute final/on-site interviews. Yea, those 5 hours interviews where you meet every hiring manager and their mother and get grilled round after round because you can't find the optimal solution for sorting a reverse binary search tree that is upside down, flipped, and cooked well done while someone is staring at you, asking questions, and forbidding you from using any resources you would have at your disposable in (almost) any given real world scenario. Yea, those are the real stress-inducing woes of the software interview process, and I would think people would want to avoid those at all costs. Anecdotally, the company that I started working for 3 months ago gave me the choice of a 4 1/2 zoom interview consisting of 4 one hour technical interviews with different hiring managers, or a take-home project that would take 6-10 hours with a 1 1/2 hour follow up discussing my project. The decision was so obvious - stress study an entire week before the interview (hint, this alone probably would take up more time than the take-home project, but on the other hand does prepare you for future interviews) and then endure the torture that is 4+ hours on a zoom call / in an office coding on a whiteboard, or spend about 1-2 hours a day for a week, with access to all resources, leisurely coding up a project, that if done correctly, increases your chance of getting a job astronomically. Not to mention, this option is becoming much more popular with COVID and WFH and the lack of being able to get candidates into the office.

All in all, I really wish more companies offered take-home projects as at least an option for their interview process. In my opinion, they are more informative for both parties, as it represents the work you will be doing if you were to get the job, and it is indicative of the level of effort and knowledge you possess in context of the position they are seeking to fill. I really wish everyone on here would stop spreading their hatred for take-home projects, especially to new grads who have never even done them. And for the love of god stop saying to bill the company for making you do a take-home project, that is just the silliest thing I have ever heard, and I DOUBT any company ever would reply to that kind of an invoice. If you really have that much adversity to them, just don't bother.

TL;DR: I believe some take-home projects are worth doing ¯\_(ツ)_/¯
submitted by Kixstander to cscareerquestions [link] [comments]

Best Binary Option Auto Signal Indicator// Attach With ... Best Binary Options Signal Indicator Software  The Best Binary Options Trading Software 2014 VJ- Binary Option Signal Indicator MT2 -Automation The best binary option indicator 2018 GOD OF INDICATORS - 99,99% work - binary option strategy ...

Binary Options Secret Behind Most Profitable Traders That Can Give Anyone Unbelievable Profits With More Than 95% Accuracy " No MT4 use at all, No indicators, No martingale (increase % per lost trade) No "earn $20 for each $2 you lose" or some BS software, No Gambling. OptionRobot.com is a 100% auto trading software for binary options. The Binary Option Robot generates trading signals and automatically executes trades direct to your linked broker account. OptionRobot.com ... If any of multiple indicator selections have different signals (BUY or SELL) then no trade is executed. Trend indicator. Binary options are good in the first place that allow you to quickly ramp up profits. And help it to make the indicators with a short expiration. One such indicator is the Binary Winner, which is designed to trade on the M5 from the time of expiry of 5 minutes. Binary Options Indicators. In this category are published only the best and most accurate binary options indicators. All binary options indicators on this site can be downloaded for free. Most of them are not repainted and are not delayed and will be a good trading tool for a trader of any level. Download a huge collection of Binary options strategies, trading systems and Binary Options indicators 100% Free. Get your download link now.

[index] [4291] [669] [307] [4678] [4886] [4168] [1130] [1069] [5386] [3608]

Best Binary Option Auto Signal Indicator// Attach With ...

get trading bots contact with telegram https://bit.ly/3aR8baT get pro or free signals https://bit.ly/2N5PLrp get strategy trading, visit my twitter https://b... vj-binary-option-sniper-indicator with real time signal buffer. signal appears immediately at the beginning of a new candle! 100% non-repainted ! no delay! use mt2 software for fast entry . Hello Trader Toady i will share you "Best Binary Option Auto Signal Indicator" Characteristics of Indicator 1. Platform - Metatrader4. 2. Asset - Show On Ind... http://tinyurl.com/EABuilder2016 Create your own indicator on Binary Option or Forex and watch it trade on auto with your own parameters. The video above sho... - Best Binary Option Auto Signal Indicator: https: ... Free Download IQ Option- Binary Option Bot- Robot// Auto Trading Signal Software !! 2019 - Duration: 16:48. AM Trading Tips 84,826 views.

#